Physics 200

68

Final Exam

December 16, 2009

This is a closed book examination. You may use a small 3x5 card with equations on it. There is extra scratch paper available. <u>Explanations</u> must be <u>included</u> with all answers – even multiple-choice questions. Your explanation is worth 75% of the possible points.

A general reminder about problem solving:

A general terminder about problem solving.	
 Focus Draw a picture of the problem What is the question? What do you want to know? 	 Modify schematic and coordinate system (if needed) Write general equations Execute
 List known and unknown quantities List assumptions Physics 	 Write equations with variables Do you have sufficient equations to determine your unknowns?
 Determine approach – What physics principles will you use? Pick a coordinate system Simplify picture to a schematic (if needed) Plan Divide problem into sub-problems 	 Simplify and solve Evaluate Check units Why is answer reasonable? Check limiting cases! Show all work!

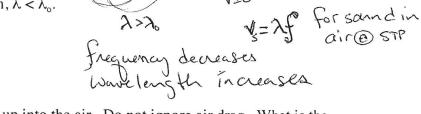
Possibly useful mathematical relationships:

Law of Cosines $c^2 = a^2 + b^2 - 2ab\cos(\theta)$ which for $\theta = 90^\circ$ is the Pythagorean theorem $c^2 = a^2 + b^2$

Trigonometric identities:

 $\sin^{2}(\theta) + \cos^{2}(\theta) = 1$ $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ $\cos(2\theta) = \cos^{2}(\theta) - \sin^{2}(\theta) = 2\cos^{2}(\theta) - 1 = 1 - 2\sin^{2}(\theta)$

Derivative $\frac{d}{du}Cu^n = nCu^{n-1}$ and anti-derivative (integral) $\int Cu^n du = \frac{1}{n+1}Cu^{n+1} + const.$ of a polynomial Derivative $\frac{d}{du}k\sin(au) = ka\cos(au)$ and integral $\int k\sin(au)du = -\frac{k}{a}\cos(au) + const.$ of the sine function Derivative $\frac{d}{du}k\cos(au) = -ka\sin(au)$ and integral $\int k\cos(au)du = \frac{k}{a}\sin(au) + const.$ of the cosine function The Chain Rule $\frac{d}{dz}f(u) = \frac{d}{dz}u\frac{d}{du}f(u)$


Useful Data: Mass of Earth, $M_E = 5.97 \times 10^{24}$ kg Radius of the Earth, $R_E = 6.38 \times 10^6$ m Gravitational Constant, $G = 6.67 \times 10^{-11}$ Nm²/kg² The next two questions involve an experiment involving a very fast vehicle and an annoying buzzer that emits a tone at a frequency f_0 . Both vehicles can travel faster than the speed of sound, v_s.

- 1) [4 pts] The buzzer is stationary and you move away at a speed $v=1.2 v_s$. What frequency do you hear?
 - a) You hear a higher frequency, $f > f_0$.
 - b) You hear the same frequency, $f = f_0$.
 - c) You hear a lower frequency, $f < f_0$. You don't hear anything.
- (v) at a speed v=1.2 vs. What negatively do you (vs))) Buzzer You Sound waves do not reach you since you are moving faster than the sound waves

You VZO

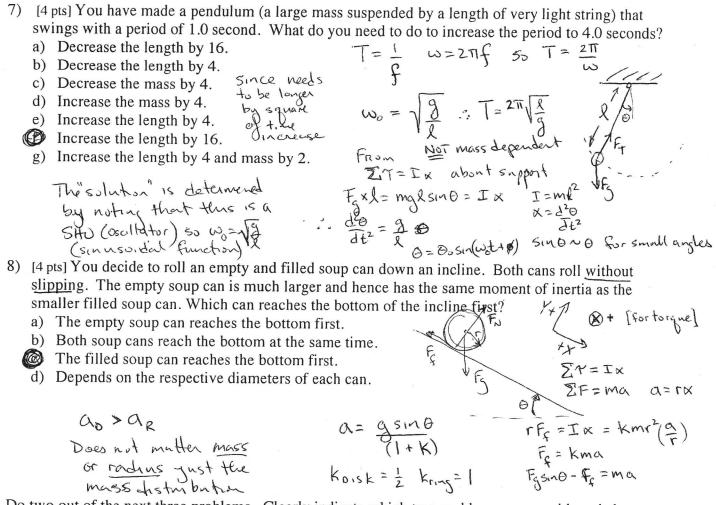
2) [4 pts] You are stationary and the buzzer, mounted on the back of the vehicle, moves away at a speed v=1.2 v_s. What wavelength do you measure? $\bigvee_{z=1,2}^{z=1,2} v_{s} > v_{s}$

- You measure a longer wavelength, $\lambda > \lambda_{o}$.
 - b) You measure the same wavelength, $\lambda = \lambda_0$.
 - c) You measure a shorter wavelength, $\lambda < \lambda_0$.
 - d) You don't measure any wave.

3) [4 pts] You throw a tennis ball straight up into the air. Do not ignore air drag. What is the acceleration at the very top of the ball's trajectory?

- a) The acceleration is less than g.
- Description The acceleration is equal to g.
 - c) The acceleration is equal to $0^{m/s^2}$.
 - d) The acceleration is greater than g.
 - e) The acceleration depends on the initial velocity.
- f) Not enough information given.

4) [8 pts] You have a ring and a solid disk that both have the same radius that are free to rotate (spin) about their axis. The moment of inertia of the disk $(\frac{1}{2}mr^2)$ and the moment of inertia of the ring (mr^2) are equal since the disk has twice the mass of the ring. If you apply the same torque to these objects for the same distance, which object has a greater angular velocity?


Assume both objects start from rest.

- a) The ring
- b) The disk
- They both spin at the same rate

JP-JB = DE Both objects have the same KE after being spin KED = KER JIW = JIRWR IR=ID : WOZWR 2

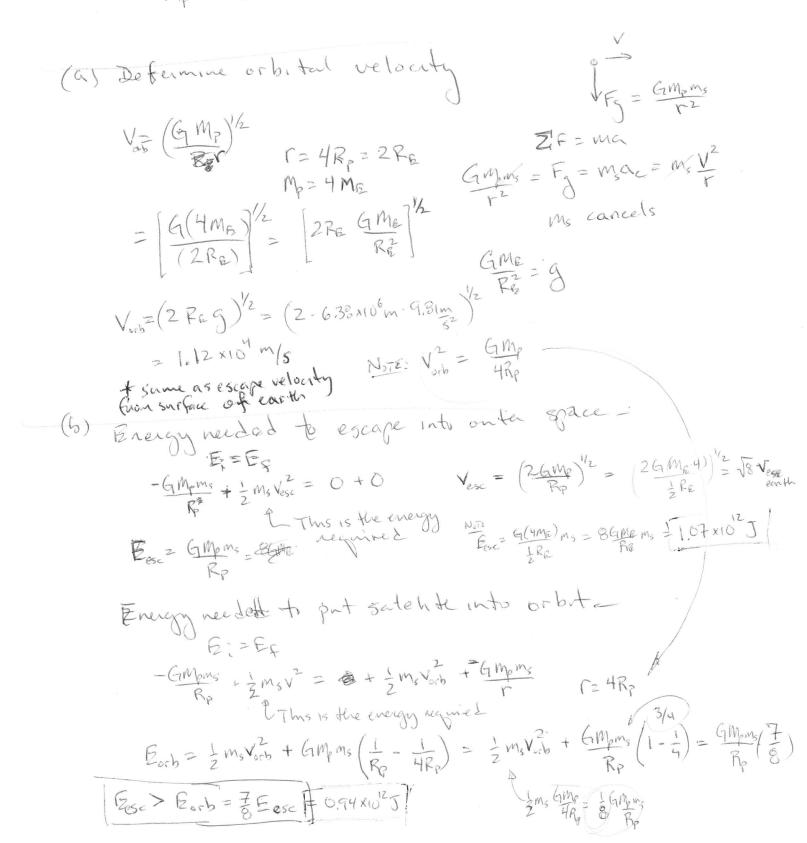
v(t) 5) [8 PTS] You observe an object with the following velocity as a function of time graph. Draw the corresponding position and acceleration graphs? 0a(t) $\mathbf{x}(t)$ + positive B V is negative V 20 V20 v(t) 6) [8 PTS] You observe another object with a very similar shaped velocity as a function of time graph. 0-Draw the corresponding position and acceleration graphs. Explain what is the same and what is different about these two v(t) graphs. slope is al a(t) XXI) t Ø shallo-> parabulla They have the same a(t) graphs - while the shape of their v(t) graphs are similar -the resulting X(t) graphs are guite different offerent 3

VZD

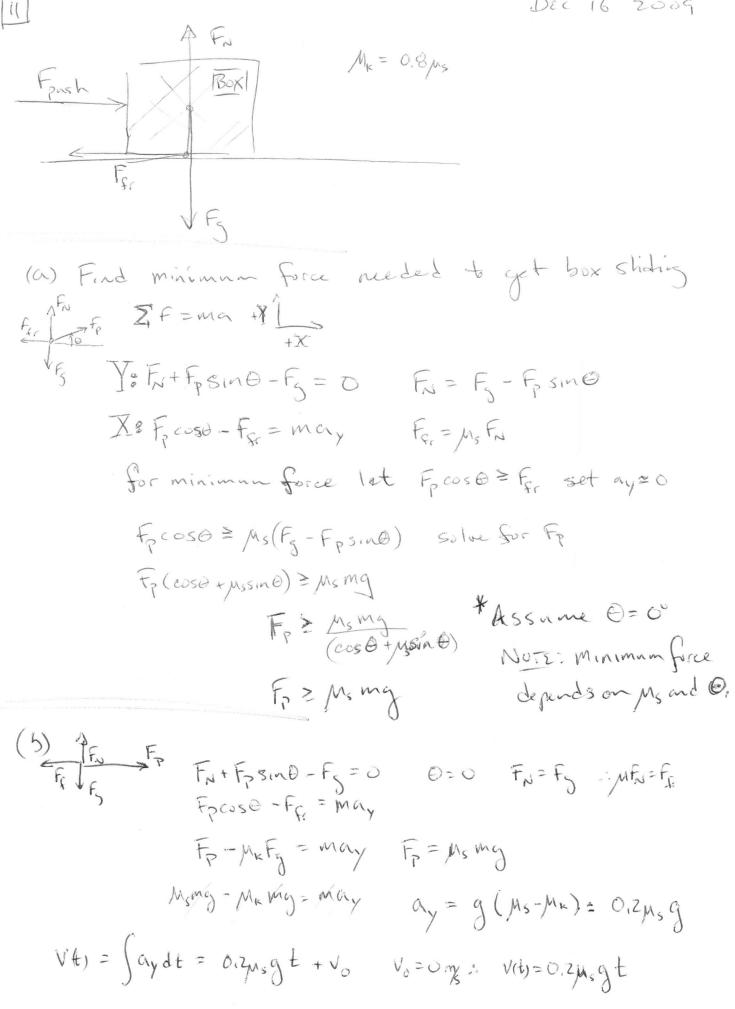
Do two out of the next three problems. Clearly indicate which two problems you would graded.

- 9) [12 pts] A 0.50 kg mass is attached to the bottom of a spring attached to a stand. The system is started oscillating by displacing the mass from its equilibrium position. The resulting motion of the mass is described in SI units by the function $y(t) = 0.10\sin(10t 1.57)$.
 - a) What is the spring constant of the spring?
 - b) What is the maximum energy stored in the spring?
 - c) What is the maximum kinetic energy of the mass?

10) [12 pts] Consider a planet with 1/2 the radius and 4 times the mass of the earth.


- a) What is the orbital velocity for a 2140 kg satellite in a circular orbit at 4 times the planet's radius (or $2R_E$)?
- b) Compare the energy needed to launch the satellite in to outer space to the energy required to launch the satellite into the orbit above. NOTE: Don't forget gravitational potential energy.
- 11) [12 pts] You need to push a heavy box across a ballroom. The kinetic coefficient of friction is 80% the static coefficient of friction, $\mu_k = 0.8\mu_s$.
 - a) What is the minimum force needed to start the box sliding?
 - b) If you keep pushing the box with the same force (from above), what is the velocity of the box at any time? NOTE: Assume you have enough floor space so you won't run into a wall anytime soon.

4


DEC 16 2009

Dec 16 2009

